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Abstract
Author affiliations provide key information when attributing academic performance like publication counts. So far, such
measures have been aggregated either manually or only to top-level institutions, such as universities. Supervised affiliation
resolution requires a large number of annotated alignments between affiliation strings and known institutions, which are
not readily available. We introduce the task of unsupervised hierarchical affiliation resolution, which assigns affiliations to
institutions on all hierarchy levels (e.g. departments), discovering the institutions as well as their hierarchical ordering on the
fly. From the corresponding requirements, we derive a simple conceptual framework based on the subset partial order that can
be extended to account for the discrepancies evident in realistic affiliations from the Web of Science. We implement initial
baselines and provide datasets and evaluation metrics for experimentation. Results show that mapping affiliations to known
institutions and discovering lower-level institutions works well with simple baselines, whereas unsupervised top-level- and
hierarchical resolution is more challenging. Our work provides structured guidance for further in-depth studies and improved
methodology by identifying and discussing a number of observed difficulties and important challenges that future work needs
to address.

Keywords Entity resolution · Affiliation resolution · Formal concept analysis · Association rule learning · Taxonomy
induction

1 Introduction

In the light of an ever-growing body of scholarly docu-
ments, it is crucial for entity-centric analysis to disambiguate
publications, authors and institutions by specialized Entity
Resolution (ER) methods such as deduplication, author
disambiguation and affiliation resolution. One application
is to automatically quantify scientific performance, e.g. to
attribute unique publications or their citations to individual
persons or institutions.

B Tobias Backes
tobias.backes@gesis.org

Daniel Hienert
daniel.hienert@gesis.org

Stefan Dietze
stefan.dietze@gesis.org

1 GESIS - Leibniz Institute for the Social Sciences, Unter
Sachsenhausen 6-8, 50667 Cologne, Germany

2 Heinrich Heine University Düsseldorf, Düsseldorf, Germany

This work is concerned with the distinction of higher edu-
cation institutions, such as ranked, for example, by Times
HigherEducation [8]. In addition to prestige (“informedprej-
udice” [6]), these are important formaking funding decisions
or finding a place to study or work [7,26,31,46]. Previous
work on such performance indicators has either used manu-
ally compiled lists of decision-making units mapped to the
corresponding researchers or publications [2,12,14,27,29,34,
36,47] or has automatically resolved affiliations to top-level
institutions [5,13,15,22–25,30,37,38,44]. In contrast, impact
measures for lower-level institutions could be aggregated
automatically if affiliation records collected by providers like
the Web of Science (WoS) [3,4] were properly resolved on
the respective level.

This could be achieved by new methods addressing the
task that we introduce as ‘hierarchical affiliation resolution’:
affiliation resolution maps affiliation strings to real-world
institutions. All prior resolution methods merge affiliations
under top-level institutions. In reality though, institutions are
hierarchically organized into substructures, e.g. a university
might have faculties as branches, which again branch into
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areas and then into chairs. Hierarchical resolution allows to
arrange institutional entities on different levels to allow for a
variable choice of granularity.

The focus of this work is to analyse this new task, provid-
ing a framework, a first baseline, data and evaluationmethods
to start experimentation and perform a thorough error analy-
sis.We obtain a comprehensive first understanding of the task
and lay foundations for future work by offering the following
contributions:

C1 Requirements for ordering affiliations hierarchically
C2 Systematic framework meeting the requirements
C3 Implementation with first baseline components
C4 Datasets and measures for evaluation
C5 List of challenging aspects for future work

In Sect. 2, we cover related literature, discussing both appli-
cation scenarios and existing top-level institution resolution
methods. In Sect. 3, we discuss preliminaries such as bottom-
up and top-down considerations concerning the structure of
institutional hierarchies and their potential induction from
data. Here, we arrive at a number of tasks inherent to the
problem and derive a conceptual framework of modular
components that can be specified to solve the tasks. Sec-
tion 4 relates to the framework concrete observations made
in the WoS affiliation data, suggesting first baseline methods
to approach each of them. In Sect. 5, we discuss evalua-
tion techniques, the datasets used and created by us and our
experimental setup, whereas Sect. 6 introduces the results of
these experiments and provides a thorough error analysis. In
Sect. 7, we discuss those results and we conclude in Sect. 8.

2 Related work

Areviewof the literature suggests that the use of performance
indicators in higher education for the purpose of evaluating
individual institutions had become a major topic after the
1970’s—and by the early 1990’s had attracted considerable
research interest.

Higher education performance indicators As early as 1977,
Birch andCalvert [10] have discussed the use of performance
indicators in higher education, but have focused on efficiency
and effectiveness of teaching after concluding that the overall
benefits of higher education remain elusive and thus can-
not be measured. Ten years later, Ball and Halwachi [6]
stress again the difficulty of defining quantifiable institutional
goals. Citing the “Jarratt Report,” they list a large number of
potential performance indicators, among them various forms
of staff publication output. Johnes [26] continues this dis-
cussion with a focus on publication and citation count as
performancemeasures, both of which seem to be particularly

popular today. Here, he lists a number of problems associated
with both of them. While he acknowledges the now well-
recognized argument that “some publications may be cited
often (and so have considerable impact) not because they are
of high quality, but because they are wrong,” he does not
mention the difference between quantity and quality when it
comes to number of publications. Other related works from
this time include Kells [31], Sizer et al. [46] as well as Ball
and Wilkinson [7]. More recently, Johnes [28] summarizes
public and private benefits of higher education, listing three
major aspects of the measurements: (a) the entities for which
measurements are aggregated, (b) the measures themselves
and (c) their weighting. In 2019, Aksnes et al. [1] have con-
tributed a more comprehensive overview of the relationship
between citations and research quality.

Departmental comparisons In the context of our work, we
are particularly interested in the above point (a) the institu-
tional entities for which measurements are taken. Assuming
that the task tackled in our work is particularly important
for assessment of lower-level institutions, in the follow-
ing, we list a number of performance comparison studies
conducted on the departmental level. Davis and Papanek
[14] compare 122 major economics departments by cita-
tion count. The departments where hand selected. Liebowitz
and Palmer [34] tabulate the development of SSCI cita-
tions aggregated by sorting over 3000 researchers manually
into more than 100 economics research groups (in the US,
Canada and the UK) and compare the corresponding scores
based on different weighting schemes. They stress various
advantages of this methodology over previous survey-based
approaches. Johnes and Johnes [27] analyse publication lists
compiled manually by UK economics departments upon
request from the Royal Economic Society. Su [47] compared
survey-based assessments of university departments in Tai-
wan based on academics’ opinions to those conducted by
the government. Johnston et al. [29] compare peer reviews
of all UK university departments’ research quality collected
by Universities Funding Council to the departments’ sizes.
Altanopoulou et al. [2] compare the h-index of 93 Greek uni-
versity departments, which was collected manually by using
Google Scholar to count the citations of the departments’
research staff listed on department websites. Miroiu et al.
[36] conduct a similar study for Romania and use the g-
index instead. Recently, Chen and Chang [12] compare the
performance of 33 departments of Chung Chen University
in Taiwan, among others based on publication counts. They
briefly discuss the manual selection process used to obtain
these ‘decision-making units.’

Interestingly, with the slight exception of the last, none
of the above studies reports any problem in defining what
counts as ‘department’ in an institutional hierarchy com-
prised of amultitude of levels. All of the studies usemanually
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created resources to compile the list of departments and
to assign researchers or publications to them (so that, for
example, publication counts can be aggregated by depart-
ment). In our work, we show the difficulty of separating
individual decision-making units in the institutional hierar-
chies (that also change over time) and explore opportunities
to automatically assign publications to such units (indepen-
dent of their level in the hierarchy). Thereby, we address
the lack of scalable attribution methods in the above men-
tioned literature as well as obvious issues with limiting
analysis to top-level institutions noted among others by Bor-
gen and Mastekaasa [11] (“the college quality literature has
generally treated educational institutions as homogeneous
entities and has largely neglected the possibility of substan-
tial within-institution quality variation, specifically across
departments”) and by Dillon and Smith [18] (“we know
that individual students at larger colleges experience very
different parts of what their institutions have to offer–for
example, faculty research and teaching quality may dif-
fer across departments.”). While there is no baseline for
hierarchical affiliation resolution, a number of methods for
top-level resolution have been proposed. In the following, we
distinguish linking- (supervised), clustering-based (unsuper-
vised) and mixed (semi-supervised) methods.

Linking-based resolution Linking is relatively simple as tar-
get institutions are known and affiliations only need to be
assigned to the most similar institution, simplifying the task
to finding a good similarity measure. Jacob et al. [24] extract
affiliations from 48M resumes and link them to institutions
extracted from Wikipedia applying retrieval-based candi-
date selection followed by similarity-based filtering. They
report an accuracy of over 90%. Orduna-Malea et al. [38] use
Google Scholar’s built-in affiliation suggestion method and
evaluate it manually for Spanish universities, noting a lack of
recall caused bymissing institutions andweak typo-handling
as well as some precision problems where the system incor-
rectly groups distinct universities. Shao et al. [44] deploy a
method very similar to [24], linking to Chinese knowledge
graphs and achieving 75% accuracy in their evaluation.

Normalization-based unsupervised resolution Bruin et al.
[16] discuss normalization techniques, mentioning among
others that due to address variations, alphabetical sorting is
not sufficient for grouping the same or similar institutions.
They propose a rule-based approach with considerable man-
ual work to overcome these problems and conclude their
methodwas“highly successful”. Galvez et al. [21] givemany
examples of ambiguous affiliations in the WoS. They use
finite state transducers implementing mappings like Com-
putac → Comp to normalize them. Using only a small set of
related affiliations, they certainly underestimate the extend of
variation in affiliation strings. The Swedish ResearchCouncil
(SRC) [32] uses a pipeline of variousmatch queries that com-

plete the insufficient organizational information provided by
Thomson Reuters and resolve affiliations to top-level institu-
tions.Morillo et al. [37] performposition dependent keyword
extraction to label affiliations by top-level sectors like uni-
versity, company, health, NPO, other, etc. The difficulty of
the task varies for different sectors (university: 0%–other:
50+%). Although this disambiguates to the sector-level and
not the top-level institutions, knowing the sector can be useful
for the latter task. Keyword extraction certainly is essential
in our work. Clarivate Analytics, the current owner of the
WoS, undertakes a procedure to normalize affiliation strings
and enable top-level aggregation by automatic normaliza-
tion, manual assignment and customer feedback [3,4]. All
following works (like ours) are based on their normalized
affiliations.

Comparison-based unsupervised resolution Aumueller and
Rahm [5] estimate pairwise matching likelihood in terms of
top-k search result overlap when entering normalized affilia-
tions as queries into large-scale search engines. Like us, they
first remove the address component of the affiliation string
and then proceed with the institutional functions like univer-
sity, faculty, chair—of which they extract the most general.
They achieve 83%F1with Google’s top-8 results. Jiang et al.
[25] use normalize compression distance to groupWoS affili-
ations in a fixed number of clusters,which achieves better and
more predictable results than a k-means baseline on a set of
extracted features. Huang et al. [22] derive rules to recognize
synonymous affiliations from patterns learned frommatched
affiliation strings. They align similar affiliation strings for the
same author name and learn a rule-based mapping between
them. While this is an interesting approach, it suffers among
others from author name homonymy. Huang et al. [23] use
country-base blocking followed by key collision and near-
est neighbour search to achieve 91-98% F1. However, in the
scenario evaluated in [44], their method only achieves 64%
accuracy.

Semi-supervised resolution In line with our approach, Jon-
nalagadda andTopham[30]first identify address components
like country or street in affiliations and continue to parse
the rest using manually curated keyword lists. Cases of
synonymy—in particular missing information—are tackled
by agglomerative clustering with edit distance and retrieval
towards the resulting “organization clusters”. Similarly,
Jiang et al. [25] use agglomerative clustering on a “nor-
mal compressor distance” to disambiguate affiliations and
interlink entities in a semantic web library. Cuxac et al. [13]
propose a supervised and a semi-supervised approach for
resolving affiliations: a naive Bayes classifier to assign affil-
iations to existing sets of institutional references as well as
a mix of soft clustering and Bayesian learning for grouping
similar affiliations. Rimmert et al. [43] assign all German
affiliations to their top-level institutions and discuss most
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problems that we experience, such as overly general rep-
resentations, affiliated institutions with uncredited top-level
and unobserved top-level organizations. Essentially, they
reconstruct the German institution hierarchy and define a
pipeline of normalization and assignment rules to map affili-
ations to top-level nodes. This requires considerable manual
effort, but enablesmaximumperformance: The result of their
method was thoroughly evaluated in the follow-up work by
Donner et al. [19] and can be considered close to perfect.

3 Preliminaries

An institution is a real-world organizational entity dedi-
cated to fulfilling some more or less steady and well-defined
function, in our case the purpose of higher education.Anaffil-
iation is a reference to an institution, commonly associated
with an author on a scientific publication. An institutional
hierarchy encodes the organizational reporting structure
and/or part of relation. For example, a department and its
employees (including the professor)might be part of a faculty
(and report to its dean), which in turn is part of a university
(managed by a rector). Lower-level institutions are subordi-
nate to higher levels. Normally, a hierarchy is considered a
tree, i.e. any lower-level institution is directly subordinate
to exactly one higher-level institution. However, constructs
such as interdisciplinary research groupsmight in fact be sub-
ordinate to multiple higher-level institutions. For the set of
all higher education institutions, there is no such thing as one
overarching top-level entity. Instead, they are partitioned into
independent top-level institutions (mostly universities) that
each have their own hierarchical structure, which depends
on the institution’s focus, its country’s regulations, cultural
conventions, etc.

Hierarchical affiliation resolution The task of hierarchical
affiliation resolution entails ordering two affiliations a, b
such that if a, b refer to institutions A, B, respectively, and
A < B in the hierarchy, then a < b in the solution. Likewise,
if A = B, then a and b should be assigned the same hierarchi-
cal node. This means that every institution referred to by at
least one affiliation has exactly one node in the solution hier-
archy. In addition, it is possible to interpolate unobserved
nodes. For example, a faculty might never be referenced
directly, but is implicit in the reference to a chair subordi-
nate to it. Irrespective the differences in the target hierarchies
and independent of a particular approach for finding them,
we can determine the following aspects inherent to the solu-
tion of hierarchical affiliation resolution: (a) the top-level
institutions, (b) the mapping between affiliations and their
top-level institution(s), more specifically (c) the individual
lower-level institutions referred to by the affiliations, (d) the
mapping between affiliations and the latter and (e) the hierar-

chical ordering of lower-level institutions. This corresponds
to the five subtasks from Fig. 1:

T1 Discover top-level institutions.
T2 Assign affiliations to a given top-level institution.
T3 Discover institutions at all levels.
T4 Assign to any institution in the hierarchy.
T5 Order institutions hierarchically.

In our work, we assume affiliations as input. Other works
concerning top-level resolution sometimes also require the
institutions to be known and confine themselves to solving
the task T2 of assigning affiliations to top-level institutions
as illustrated in Fig. 1c. Thus, they exclude tasks T1, T3, T4
and T5 (Fig. 1b, d, e, f). The steps illustrated in Fig. 1b, c can
be reversed in order by clustering affiliations first and then
distilling from each cluster the top-level institutional identity.
This is done by some other works not requiring knowledge
about the institutions. Should the top-level institutions be
known due to the existence of some curated list or knowl-
edge base, T1 should be skipped and the known institutions
should be used. Although theGERiT hierarchy (as described
in the next paragraph) is an exception, curated institution
hierarchies are (a) rare and only available for certain coun-
tries and (b) their existence does not imply that a lower-level
linking approach can do without regarding the relationships
between the affiliations to be linked as does our data-based
approach. Probably, in such a case the optimal solutionwould
consider both the similarity of a known institution to some
affiliations and their equivalence or hierarchical order.

Affiliations as paths of an institutional hierarchyGERiT [17]
encodes the majority of the German higher education insti-
tutional hierarchy. Here, we find all hierarchy nodes labelled
with an official name. These names do not make for good
affiliations, since they could be used multiple times under
the same or another top-level institution. As shown in Fig. 2,
computational linguistics departments exists at Bielefeld as
well as Saarland University (and others). However, without
knowledge of other institutions, any lower-level institution
can be referenced in an unambiguous way by listing all its
higher-level institutions (ancestors in the tree), e.g. “Com-
putational Linguistics Group, Degree Course in Linguistics,
Faculty of Linguistics and Literature, Bielefeld University”,
which uses a complete institutional ‘path’ to locate the ref-
erenced institution in the true hierarchy.

Hierarchies as the union of their affiliations Affiliations are
references to nodes in an institutional hierarchy and allow to
draw inferences regarding the latter, in particular if the insti-
tutional paths that they specify share the following properties.

1. All paths are given in the correct sequence.
2. All paths are complete in all affiliations.
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Fig. 1 Illustrating subtasks T1–T5 inherent to hierarchical affiliation resolution as iterative steps

Fig. 2 Two examples from the 2021 GERIT hierarchy, both referring to computational linguistics departments, but at different universities. Above
in red are hypothetical perfect affiliations that list all higher-level institutions (color figure online)

3. Path elements are homogenized across affiliations.
4. Each true node is referenced by some affiliation.

In this case, the hierarchy is simply the union of all affilia-
tions. We can relax the above requirements by assuming that
the path elements need not be ordered to recover the true hier-
archy if all paths are complete and there is an affiliation for
each lower-level institution, because then the order of longer
paths is determined by the existence of the corresponding
shorter paths that lead up to them. For example, when look-

ing at an affiliation with path nodes A,B,C, we might not
know if A→B→C or A→C→B, etc., but if A and A,B exists
and A,C does not, then it is clear that the first case is correct.
Assuming complete paths, C cannot be referenced without
reporting B. Under these circumstances, the subset partial
order reproduces the true hierarchy from affiliations repre-
sented as sets of path nodes. Each subset relation ⊆ over a
set of sets (representations such as A, B,C) is a partial order
as it is transitive (A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C), reflexive
(A ⊆ A) and anti-symmetric (A ⊆ B ⇒ B � A).
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Fig. 3 Five components of our proposed framework. Grey circles a–l
and m–w are affiliations, clusters A, B, etc. are representations/nodes.
a Representation creates one feature set per affiliation. b Interpola-
tion creates unobserved representations by means of generalization.
Drop non-intermediate ones. In this example, the resulting nodes are all

ignored later. c Separation finds minimal elements (in red) and/or con-
nected components. d Collocation builds the Hasse diagram for each
minimal element or connected component. e Conflation determines
equivalent adjacent nodes (red edge) and merge them (right) (color fig-
ure online)

Table 1 True hierarchy paths compared to those given by affiliations

PATHS BY

HIERARCHY

PATHS BY AFFILIATIONS

realistic

subset

subseq.

=

permut.

elements ordered • • ◦ ◦ • • ◦ ◦ ◦ ◦ • • • • ◦ ◦
elements complete • • • • ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦
elements same ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • •
all path available • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦
recovers hierarchy ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦

The latter are either only subsets of, only subsequences of, only permu-
tations of, or identical to the first. If all paths are available, permutations
suffice to recover the affiliations’ true hierarchy

Realistic affiliations In reality, e.g. in WoS affiliation strings,
it is likely that an affiliation only reports a subsequence or
subset of its ancestors, e.g. “Bielefeld University, Computa-
tional Linguistics Group”. Further variations from the norm
will happen within the node labels, as in “Univ Bielefeld,
Comp Ling”. Finally, it is unlikely that there is an affiliation
for each institution, in particular for intermediate ones like
“Faculty of Linguistics andLiterature, BielefeldUniversity”.
In summary, given perfect affiliations (paths complete and
homogenized), we can recover their hierarchy, if the paths
are sorted by hierarchy level or if we have an affiliation for
each node in the hierarchy (see Table 1). In this paper, we do
not assume to know the path as sequence (affiliation strings
are rather arbitrary in this regard) and instead represent affili-
ations as sets, which is a major simplification and allows use

of the subset partial order. Therefore, efforts dealing with
realistic affiliations should try and achieve the following:

1. Homogenize equivalent names/terms across paths
2. Interpolate to get affiliations for most nodes
3. Find ancestors to complete an affiliation’s path

In the following, we briefly describe a framework that
provides opportunities to achieve the first two means and
recreates the hierarchy where possible (the first goal remains
partially out of scope in this work). In Sect. 3, this framework
is applied to real affiliations.

Integrated Framework Figure 3 visualizes a framework that
produces institutional hierarchies from affiliation strings.
With perfect affiliations, the steps in Fig. 3a, d suffice.
First, we represent each affiliation as the set of nodes in
the path that it describes. We call this step Representation.
For example, “Computational Linguistics Group, Degree
Course in Linguistics, Faculty of Linguistics and Literature,
Bielefeld University” consists of “Degree Course in Linguis-
tics”, “Bielefeld University”, “Faculty of Linguistics and
Literature” and “Computational Linguistics Group”. The
hierarchy is reconstructed by the subset partial order and
visualized as the Hasse diagram of the partially ordered set
of affiliation representations. We refer to this step as Collo-
cation. If all hierarchy nodes are given as affiliations and all
affiliations are perfect, then the hierarchy should be recreated
perfectly in almost all cases. With real affiliations, a number
of restrictions apply:

1. Not all path nodes are referenced in the same way, e.g.
“Comp Ling Grp” vs. “Computerlinguistik.”
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Fig. 4 Two examples from Fig. 2, here obtained through the subset partial order over the representations obtained from complete affiliation strings
similar to the ones given in Fig. 2. The GERIT dataset used here is from 2019, which explains why some institutional merges visible in Fig. 2 have
not been realized yet

2. Not all hierarchy nodes are referenced by affiliations, e.g.
faculties are rarely referenced as such.

3. Not all paths specified by affiliations are complete, e.g.
intermediate levels like faculty are often ignored.

The first point can be addressed during the representation
step. As many similarities among equivalent but different
affiliation strings are reflected in a high term overlap, in this
work, we experiment with representing each affiliation not
simply by the set of (normalized) path nodes it references, but
also split each string expressing one such node into multiple
terms. At the same time, we try to label these terms by the
institutional function that the respective node fulfills—e.g.
(“Comp,”group) and (“Ling,” group)—meaning all lower
levels in the hierarchy need to share all of these terms (see
Fig. 4). This mixes descriptive overlap with hierarchical
overlap and also requires conflation. Any normalization is
appreciated when turning affiliations into representations.
The second point can be addressed by Interpolation. Here,
we guess intermediate affiliations from observed affiliations,
e.g. “Faculty of Linguistics and Literature, Bielefeld Uni-
versity” from “Computational Linguistics Group, Faculty of
Linguistics and Literature, Bielefeld University”. The labels
for institutional functions are essential at this point because
they tell us which elements of an affiliation representation
can be dropped to obtain higher-level institutional nodes.
The third point can to some extend be addressed by Con-
flation: given two adjacent representations in the induced
hierarchy, decide if they are equivalent or not. As shown in
Fig. 5, functional labels like FAC or CHAIR can be used

to identify equivalent affiliations. For example, in Fig. 5a,
CHAIR,FAC,UNI specifies CHAIR,UNI, but we know that
faculty is higher-level than chair, so they must be equiva-
lent. However, if there is simply no affiliation that associates
a certain CHAIR with a certain FAC, then conflation can-
not possibly solve our problem, and external resources are
required. Thiswe do not investigate in ourwork. Over perfect
affiliations, the subset partial order will produce individual
hierarchies for each top-level institution, thus solving top-
level resolution on the fly. However, for efficiency reasons it
is desirable to first separate all affiliations by their top-level
institution after the representation step and then apply the
remaining steps for each of these separately. This we refer to
as Separation. In summary, the following steps are applied:

Representation Discover and tokenize all parts of the affil-
iation string that fulfill an institutional
function and label them correspondingly.

Interpolation By iteratively removing the elements of a
representation with the lowest-level label,
interpolate unobserved intermediate insti-
tutional levels.

Separation Like in ER blocking, reduce complexity by
partitioning the set of affiliations as sepa-
rately processed top-level institutions.

Collocation Order the representations of different affil-
iations in the subset partial order to reveal
their original hierarchical relationships.

Conflation Merge representations that are in a hier-
archical relationship after collocation, but
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Fig. 5 Four examples for simple logic-based operations to improve an incomplete institutional hierarchy

Fig. 6 Framework components and tasks: a task’s arrow crosses the
components required for its fulfillment

are actually refer to the same institutional
branch.

Figure 6 shows how they fulfill tasks T1–T5.

Some mathematical terms During representation, we turn a
set of affiliations into a set of sets of attribute-value pairs.
The subset/superset partial order over this set can be drawn
as a directed acyclic graph that has an edge for each sub-
set/superset relationship. Its transitive reduction corresponds
to a Hasse diagram for the set of affiliation representations.
During conflation, we contract edges between nodes deemed
equivalent, which returns a graph minor. During separation,
we compute connected components of the graph, creating
a partitioning of the affiliation representations, where each
component has one or more minimal elements that corre-
spond to the respective top-level institution(s).

4 Method

In the above preliminaries, we have briefly sketched the
fundamental concepts of our approach. There are five main
subtasks T1–T5 and five modular components in our frame-
work. Their relationship is depicted in Fig. 6. Assuming
perfect affiliations, assigning affiliations to a given top-level
institution (T2) is the easiest task, because we simply need
representation by feature sets to select all supersets of the
top-level institution’s representation as belonging to it (cf.
Fig. 4). This also discovers all lower-level institutions (T3)
because each unique representation corresponds to one. Not
all affiliation representations, however, describe a top-level
institution. Identifying those (T1) is achieved through sepa-
ration in terms ofminimal element search,which also speeds
upT2.The superset-approach alsoworks to assign affiliations
to lower-level institutions (T4) if their true representation
is known. Collocation essentially precomputes the superset
relations and thereby speeds up T4 in addition to creating
the hierarchical ordering of affiliations (T5). With realistic
affiliations, we add interpolation and conflation. Interpo-
lation adds additional lower-level institutions, so it changes
the result ofT3.Conflationmerges equivalent adjacent nodes,
thereby extending the representation of some nodes (T3) and
their assignment in T4 (e.g. in Fig. 5a, CHAIR,UNI becomes
CHAIR,FAC,UNI, so now it becomes a superset ofFAC,UNI).
This can also change the ordering of corresponding affilia-
tions (T5).

In the following, we attempt to bridge the gap between
the theoretical assumptions and the reality as presented
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Fig. 7 Representing affiliations: grey boxes are labelled substrings,
yellow boxes standardized labels. In the next row, individual attribute-
value pairs are derived based on the labels and extracted terms. Bottom

row features are added for generalization but not shown in the displayed
node labels shown in the bottom-right corners

by the ’dirty’ affiliation strings from the WoS. As stated
above, these efforts focus onhomogenizing affiliation strings,
interpolating intermediate hierarchies and finding equiva-
lent representations adjacent in the postulated hierarchy. For
each of our framework’s modular components, we discuss its
goal, general functioning, practical challenges and a baseline
implementation.

4.1 Representation

The goal of the representation step is to create a set of features
for each affiliation string. The representation step satisfies
the requirements for task T2 Assign affiliations to a given
top-level institution, as one can define a linking candidate
representation—i.e. UN I : {Biele f eld}—and return all its
supersets.

General Functioning The general representation parsing
approach is depicted in Fig. 7. Each part (e.g. “Chair Gifted-
ness Res & Educ”) of the institutional path (e.g. “Univ Trier,
Dept Psychol, Chair Giftedness Res & Educ”) described
by the affiliation should be separated from the other parts
(e.g. from “Dept Psychol”). With perfect affiliations, this
would be sufficient. To account for realistic affiliations, we
make two additional assumptions: First, we also split each
part into its terms, e.g. “Giftedness” and “Educ” (“Res”
is dropped like few other terms and stopwords with little
to no meaning). Second, we label each part by the institu-
tional function it seems to fulfill (e.g. (chair, “Giftedness”)
and (chair, “Educ”). The parsing process includes determin-
ing boundaries between segments of the string (e.g. comma)
and between words (e.g. whitespace) and finding function-
indicating terms to label each part (e.g. “Group” triggers
a labelling by community). The parser’s ability to generate
expressive, clean and normalized representations from affil-
iation strings has great impact on downstream performance.
As a further step of addressing realistic affiliations, terms can
be normalized to resolve equivalent variations like typos.

Table 2 Component labels with hierarchy levels and example trigger-
ing keywords

label lvl key label lvl key

unknown 0 – university 0 Univ

association 1 Assoc academy 1 Acad

college 1 College clinic 1 Klin

faculty 1 Fak centre 1 Ctr

agency 1 Amt factory 1 Werk

company 1 Ltd site 1 Campus

field 1 Sect institute 2 Seminar

lab 2 Anstalt collection 2 Archive

subfield 3 Area other 4 Dept

community 4 Group chair 4 Ls

subject 4 Fach

Practical challenges Affiliation strings in the WoS are het-
erogeneous where distinct surface forms often represent the
same concept. Prominent variations are:

a Different languages like gesellschaft/society
b Abbreviations like society/soc
c Acronyms like rwth/rhein-westfal-hs
d OCR mistakes like Diisseldorf /Düsseldorf
e Typos likeWesfalen/Westfalen
f Umlaut handling like Tuebingen/Tubingen
g Flectional forms like Energien/Energie

In addition, there is great ambiguity around the description
of institutional functions, for example, chair, department,
institute and group might in some cases all refer to the same
hierarchy node,while in others describe essential differences.

Baseline implementation As shown in Fig. 8, our pipeline
obtains representations from affiliations by

(i) Splitting a string on comma
(ii) Finding address components by regular expressions
(iii) Classifying the remaining components
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Fig. 8 Parsing affiliations into representations. Starting in the top-left
corner, grey boxes represent in- and output, rounded boxes represent
processing steps. The result is a labelled set of terms from the affiliation
string

(iv) Extracting terms for each component
(v) Normalizing terms

Most component boundaries can be detected by comma.
Address components can be detected by regular expressions.
Almost all components contain some keyword that indicates
their label (see Table 2). By browsing the WoS affiliation
strings and repeatedly viewing still unlabelled components,
we havemanually created a listwith over a hundred keywords
of the kind Fachhsch ⇒ universi t y[FH ] meaning “upon
Fachhsch, replace by FH and use as UNI.” This means that
the rules trigger upon exact stringmatch of the left-hand side.
These rules cover a large part of the potential hierarchical
substructures, but can be easily extended or learnt automat-
ically in the future. Over the labels in this list, a total order
is defined that indicates which labels cannot be above others
in a hierarchy. We allow suffix-matching for compounds like
Krebszentrum. This hierarchy is also used to chose among
multiple keywords in the same component, e.g. if “Univ” and
“Hosp” co-occur, classify as hospital because it is more spe-
cific. We have noticed that departments (e.g. Dept) can refer
to subdivisions on practically all levels of the hierarchy and
are often synonymous to other, more precise descriptors like
faculty. Therefore, we label these components by OTHER,
like those without identified keywords. In fact, all terms are
labelled OTHER in addition to their detected label. Thereby,
label information complements term information. In visual-
izations, we only display OTHER terms without any label.
For each label, we sort all terms alphabetically and compare
each termwi with all other termsw j within window-size 20,
computing (a) Damerau distance d(wi , w j ) and (b) length
of longest common prefix l(wi , w j ). If

d(wi , w j )

max(|wi |, |w j |) <
1

8
or

l(wi , w j )

max(|wi |, |w j |) >
4

5

we consider terms equivalent, get the transitive closure and
replace all terms in each equivalence class by the most fre-
quent term. Then we repeat until convergence.

Fig. 9 Creating interpolations by removing the most specific elements.
Grey box: unobserved interpolations. Arrows show which features are
carried over. The middle row has two possible direct generalizations

4.2 Interpolation

The goal of interpolation is to infer intermediate levels in
institutional hierarchies that are not observed in the sense that
there is no representation that corresponds to them exactly,
while there might be representations that refer to a specifica-
tion. Interpolation is not really required for any of the tasks,
but can help to improve the results for tasks T3–5.

General functioning An affiliation representation is general-
ized by removing its most specific elements. Given Chair of
Giftedness Research and Education, Psychological Depart-
ment, University Trier as in Fig. 9, we can infer that there
also exists University Trier, Psychological Department as
well as Chair of Giftedness Research and Education, Uni-
versity Trier and just University Trier—that is if we do not
know whether Psychological Department is above or below
Chair of Giftedness Research and Education. This is a main
use of labelling terms with hierarchical functions because
these can be used to determine the most specific part of the
institutional path referenced by an affiliation.

Practical challenges As the challenge of interpolation is to
decide which elements of an affiliation’s representation to
remove, problems arise when the information used for mak-
ing this decision is unreliable. We have already stated above
that the same institutional function is often described by
different words. In addition, depending on the top-level insti-
tution, the official functions might not always be arranged in
the same hierarchical way. For example, in Germany, some-
times a Fachbereich is equivalent to a Fakultät, sometimes
it is one level above the latter. Therefore, the institutional
function label, even if properly detected, is not always suffi-
cient to know which is the most specific part of an affiliation
representation.

Baseline implementation The question of finding general-
izations of observed affiliation representations that actually
correspond to higher level hierarchy nodes is about decid-
ing which elements of the representation to remove. For

123
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Fig. 10 Interpolation by rule-based recursive generalization through
repeated removal of the most specific features. Top to bottom. Order
of removal is based on the hardcoded level of labels (e.g. f is removed
first)

example, we might have some affiliation UNI : {x},FAC :
{y},CHAIR : {z} from which we can infer there also is an
institution UNI : {x},FAC : {y}. We look at each observed
representation separately and interpolate its superior levels
as subsets. To find the right subsets, we use our total label
order (Table 2) where we encode which labels cannot refer
to a higher level than others. This list of hierarchical func-
tions was manually determined while browsing international
affiliation strings in the WoS. If a level number is lower than
another, then its component is assumed impossible to refer
to a more specific hierarchical level than the latter’s. For
example, we assume that centre cannot be above university
(1 > 0), subfield cannot bemore specific than group. Judging
from that label order, for each representation, we remove all
features with the most specific label and repeat recursively as
in Fig. 10. If we do not knowwhich is the most specific label,
we stop. If an interpolated representation is also observed,
then the interpolation vanishes. In practice the number of
remaining interpolations is limited.

4.3 Separation

In Separation, we aim at segregating representations that
have no relationships. On the one hand, this has computa-
tional benefits as it is more convenient to apply subsequent
steps onto a number of smaller subsets rather than the entire
data. On the other hand, it performs top-level resolution. The
separation step satisfies the requirements for (T1) Discover
top-level institutions, as optimally, each minimal element
corresponds to one top-level institution.

General functioning The concept of weakly connected com-
ponents in a directed acyclic graph (i.e. our hypothesized
hierarchy) lends itself to partitioning, creating independent
institutional subgraphs that are all somehow related inter-
nally, while unrelated to any other subgraph. With perfect
affiliations, each such connected component corresponds
to the institutional hierarchy of one (or multiple related)
top-level institutions(s). The top-level institutions itself are

Fig. 11 Minimal and maximal elements in the subset relation. The
crucial point is the connectivity, which is the same in the above subset
partial order and the below graph minor based on minimal elements
(minels). Separation by connected components reduces downstream
computation complexity. The graph minor is built directly from the
data in order to save memory by skipping the intermediate edges in the
top before computing the connected components

identified as minimal elements in the subset partial order,
that is affiliation representations of which no other repre-
sentation is a subset. A connected component might have
multiple minimal elements (top-level institutions) if they are
somehow connected by a shared lower-level institution (for
example, a joint research centre). Figure 11 illustrates the
relationship between minimal elements (in black) and con-
nected components.

Practical challenges With real affiliations, overly general
representations (e.g. {(university, “Tech”)}) become a prob-
lem. They result from parsing errors or insufficient affil-
iations and create incorrect minimal elements connecting
separate institutional components. Another problem is the
possibility of legitimate common lower-level connections
betweenmany institutions. It is not unlikely that any top-level
institution shares at least one lower-level node with another
top-level, so that a ‘chain’ of components evolves and ulti-
mately almost all institutions are somehow connected.

Baseline implementation As shown in Fig. 11, mapping rep-
resentations to their minimal elements does not change the
connectivity of the corresponding graph. Its connected com-
ponents remain the same. While a minimal element can
only be in one connected component, each representation—
and thereby each component—can have multiple minimal
elements. Therefore, if we view each minimal element sep-
arately, some affiliations will show up in more than one
view. This might be useful as we have discussed earlier that
through examples like joint research centres, almost all top-
level institutions might be somehow connected. Once the
mapping between affiliation representations and their min-
imal elements has been computed, one can freely chose
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Fig. 12 Collocation and conflation in the same graph subset. On the
left, collocation manifests in the partial-order arrangement of the rep-
resentations displayed as nodes. On the right, the result of conflation is
shown

between separating by connected components or by using
minimal elements to obtain overlapping subsets correspond-
ing to individual top-level institutions. We have developed
an efficient algorithm that allows parallellized detection of
connected components in the subset partial order. We abstain
from describing it here in detail. In contrast with most other
approaches, it does not require the built partial order, but the
underlying sets as input—in this case our affiliation represen-
tations. It distributes the search space over multiple iterations
and parallel processes to discover subset relations and ulti-
mately all minimal elements of all representations.

4.4 Collocation

The goal of collocation is to hierarchically order all lower-
level institutions under the same top-level based on their
representations. Despite the common assumption of a hierar-
chy being a tree, both the true and the hypothesized hierarchy
might in fact be more general, i.e. directed acyclic graphs,
because some lower-level institutions could have multiple
‘parents.’ Collocation (partially) solves (T5) Order affilia-
tions hierarchically. Further, it enables merging equivalent
representations through conflation, which affects T3 and T4.

General functioning Given perfect affiliations in sufficient
numbers, the institutional hierarchy can be reconstructed by
applying the subset/superset partial order over their represen-
tations. The same principle is applied to imperfect affiliation
representations, so that shortcomingswill be fully observable
in the result. We do not attempt to change anything about the
partial ordering since it is the most central principle of our
approach. A first example is given in Fig. 12a. Here, any
two representations are related that are in the subset/superset

relation. The partial order can be visualized as a Hasse dia-
gram or directed acyclic graph. This does not display the
entire partial order but its transitive reduction, so that given
a → b → c, we omit a → c. If tree-shaped hierarchies
are strictly required, this can be enforced by computing a
spanning tree.

4.5 Conflation

Despite all efforts to achieve clean feature-sets during the rep-
resentation step, differences in affiliation representations can
be the result of redundancy, which is caused by variation and
incompleteness. Often, incomplete representations appear as
generalizations in the subset partial order, or variations cor-
respond to different specifications of the same parent. The
goal of conflation is to classify affiliation representations
that are adjacent in the hypothesized hierarchy as to whether
they are equivalent or not. This means deciding whether the
additional features of the superset describe a hierarchical
specification or only some additional information regarding
the same lower-level institution. The iterative application of
this step can potentially integrate missing information into
incomplete representations, thus not only reveals incorrect
dominance that is actually equivalence (regarding T5), but
also improves the set of assumed lower-level institutions (T3)
and their assignment to affiliations (T4).

General functioning In general, any binary classifier can be
applied to the task. Since it is only applied on representations
that are adjacent in the hypothesized hierarchy, the compu-
tational complexity of this pairwise comparison is limited.
We assume that the institutional function labels like chair or
department are crucial because any real dominance relation
between two affiliation representations requires for the super-
set to contain information about an additional lower-level
function label. For example,uni, facultymight be specifiedby
uni, faculty, chair. However, we know that not all additional
labels are more specific. For example, uni, faculty, chair only
completes uni, chair because faculty must be above chair.

Practical challenges Unfortunately, there is great variation
in the use of hierarchical function words. The same lower-
level institution might be referred to as department, chair,
group, etc. Therefore, it is difficult to decide the hierarchi-
cal order of those types. In addition, even the official labels
might be used differently across top-level institutions. As a
result, it can be difficult to distinguish ’legitimate’ supersets
that describe actual hierarchy and those that only add some
details to the same level. For example, in Fig. 12a we have
(C) {Educ,Gi f tedness} once as some underspecified level
OTHER and (E) once as CHAIR. As we label all terms not
only by their detected label but also with OTHER, (E) is a
superset of (C). Still, both actually refer to the same level in
the institutional hierarchy. This is not as clear for (D) and
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in fact their common specification (F) suggests that Psychol
does not refer to the chair, but to a different level. The con-
flation result for this example is shown in Fig. 12b.

Baseline implementationWith perfect labelling, it is possible
to simply merge all representations that are in the subset
partial order and have the same set of attributes. In practice,
this is not as easy and more conservative rules as applied in
the above example are recommended. Conflation creates a
graph minor by edge contraction. We want to contract edges
that do not correspond to actual hierarchical relationships.
These ’redundant’ edges are the result of a representation
being a superset of another, but none of the features in the
set difference describing a new hierarchy level, e.g.

UNI : {Heidelberg} → UNI : {Karl,Ruprecht,Heidelberg}

If all representations have unambiguously labelled terms, an
aggressive, but soundmethod is to contract all edges between
nodes with the same set of attributes/labels. This does not
merge all representations with the same set of labels since
most of them do not have any edge between them. It means
that a true hierarchical specification must introduce a new
label, for example, some

UNI : {x},FAC : {y}

cannot have another UNI : {x},FAC : { j} under it, but

UNI : {x},FAC : {y},CHAIR, {z}

would be possible for a number of distinct z. This fails
occasionally due to overly general representations or ambigu-
ous labels and merges unrelated representations like UNI :
{Heidelberg},OTHER : {Comp} vs. UNI : {Heidelberg},
OTHER : {Comp,Ling}. We use a conservative method that
contracts all edges between representations with the same set
of values/ terms, regardless of their labels. Both conflation
methods have the convenient property that they are order-
invariant, in that the order of contractions does not make a
difference to the final result.

5 Experimental evaluation

For two reasons, evaluating (hierarchical) affiliation resolu-
tion is not trivial. First, there is no large-scale hierarchical
gold dataset where affiliation strings with realistic variations
and mistakes are assigned to individual nodes. Second, there
are multiple possible solutions for comparing the hypoth-
esized hierarchy to a gold hierarchy. Figure 13 shows our
evaluation framework. Top-level resolution as a byproduct

of separation and top-level linking as realized through rep-
resentation can be evaluated on a gold labelling of separate
top-level institutions, which is easier to obtain.

5.1 Data

We deploy the Web of Science corpus with 58M publication
metadata records from 1980–2019 and 230M author men-
tions with 95M affiliations. We have identified two major
benchmarks that can act as gold standards:

a The top-level institution assignment to all German WoS
affiliation strings provided by [19,43], which resolves
6.5M affiliations to 2K top-level institutions

b The institutional hierarchies (GERiT ) of all institutions
that have ever applied for funding with the DFG (Ger-
manResearchFoundation),which is practically the entire
German research landscape

The latter contains 1978 top-level German research organi-
zations with 29,196 sub-organizations over seven hierarchy
levels. The GERiT gold hierarchies are not directly applica-
ble, as they order not (synonymous) affiliations but only map
a single name to each node (e.g. Subject Hydrology). There-
fore, we have to map ’dirty’ WoS affiliation strings to the
nodes in the gold hierarchy. For this annotation task,we apply
an automatic retrieval-based linkingmethod that suggests the
most likely matches, which are then verified or rejected man-
ually. We have thus processed all of the suggested matches
forUniversity Trier aswell as 1000 forUniversityHeidelberg
and University Bonn. An example subset of the annotation
result is depicted in Fig. 14, which shows for each node the
GERiT label on top and below the manually assigned WoS
affiliation strings.

5.2 Evaluation objectives

The contribution of our work is not an overall solution for
the problem, but rather a first analysis of the interactions
between a large collection of realistic affiliation strings, a
curated hierarchy and first baseline methods. Hence, a num-
ber of different experiments provide different pieces to the
puzzle introduced by the new task. These aspects contribute
to a basic impression:

1. General functioning of proposed framework compo-
nents (proof of concept)

2. Adequacy of baseline implementations and selective
assessment of the returned hierarchies

3. Scalability of the framework components
4. Insights about the realistic affiliations and their rela-

tionship to true lower-level institutions
These aspects are assessed by objective evaluation:
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Fig. 13 Evaluation framework using hierarchical- (GERiT [17]) and
top-level- (BFD/“Bielefeld” [43]) gold standards. Starting in top-left
corner. Yellow: input; blue: parameters; golden: gold standard; orange:
combined gold standard; green: results (color figure online)

5. Top-level resolution by separation component
Grouping affiliations by minimal elements

6. Top-level linking by superset query
Grouping affiliations by known minimal elements

7. Lower-level resolution
Discovering equivalence between affiliations

8. Hierarchical resolution
Discovering hierarchical relations between affiliations

Objectives 1–4 are addressed informally by inspecting the
processes and their outputs. Questions 5–8 are measured by
the experiments described next.

5.3 Experiments

We run three major experiments:

1. Top-level resolution: compare a top-level gold standard
against grouping of affiliations under the same minimum
element

2. Top-level linking: compare the set of all affiliations
with representations that are supersets of a top-level
institution’s canonical representation against the set of
affiliations assigned by the gold standard

3. Lower-level resolution and Hierarchical resolution:
evaluate the result of the entire framework against a hier-
archical gold standard

In the first experiment, we create a mapping between the
German WoS affiliations and their minimal elements using
the superset partial order of their representations. For any
pair of affiliations, we check if it shares one or more minimal
elements (counting towards P , the positive pairs) and if it
has the same Bielefeld gold label (counting towards T , the
true pairs). If both apply, then it also counts towards T P , the
true-positive pairs.

In the second experiment, we use UNI : {Trier}, UNI :
{Bonn} and UNI : {Heidelberg} as representations for three
top-level institutions. For each, we take the number of affil-

Fig. 14 A small subset of the hierarchical gold standard. In each node
the GERiT label is given above the line. Below it, the WoS affiliation
strings are listed that have been manually attached to it. This combi-
nation of the GERiT hierarchical gold standard and the WoS affiliation
strings achieves a hierarchical gold standard over realistic “dirty” affil-
iations

iations that are represented by supersets as P , thereof the
number of affiliations with the respective gold identifier as
T P and the overall number of affiliations with the gold iden-
tifier as T .

For the third experiment, we first separate the data by the
known top-level institutions. For each of the three annotated
top-level institutions, we apply our framework to order the
annotated affiliations, producing results like that in Fig. 15.
We then compare the hierarchical relation between two affil-
iations (= or <) computed by our method (Fig. 15) against
that annotated in the hierarchical gold standard (Fig. 14).
Each of the two relations has their own P , T and T P . Look-
ing only at equivalence (=) evaluates lower-level resolution
as it assigns affiliations to lower-level institutions without
sorting the latter hierarchically.

5.4 Evaluationmeasures

As stated above, we implement the comparison of two hier-
archies by converting them into mathematical relations (i.e.
sets of pairs). The result can be compared in terms of set over-
lap, which translateswell to commonmeasures like precision
and recall. For evaluation, we use Precision and Recall com-
puted as T P

P and T P
T , respectively, where T P is the number

of true-positives, P that of positives and T that of true pairs.
T P is the number of pairs that are both true and positive. In
top-level evaluation, a true pair is a pair of affiliations that
refers to the same top-level institution according to the gold
standard. A positive pair is one that our method claims to
be coreferring, i.e. that shares at least one minimal element.
In hierarchical evaluation, we compare two hierarchies, each
of which is encoded by the subset relation < over the men-
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Fig. 15 Some annotated affiliation strings from University Trier in the
hierarchy built over their representations. Each node label features the
representation (above line) and corresponding affiliation (below). Small
circles depict nodes without linked annotated affiliations. Green edges
are determined contractable (color figure online)

tions’ representations in the hierarchy and the equivalence
relation =. Then we compare < and = of our hierarchy as
positive pairs against < and = of the gold hierarchy as true
pairs. Perfect results can only be achieved with the annotated
representations ordered exactly as in the gold hierarchy.

6 Results

In this section, we observe the results of applying our frame-
work instantiated with the described baseline methods to the
WoS affiliations. We do so by answering the eight research
questions listed in the previous section, which are separated
into four questions of basic observations and general impres-
sions on the one hand as well as four objective evaluation
scenarios on the other.

6.1 Basic observations and general impressions

General functioning of proposed framework components All
the framework components have been successfully imple-
mented with relatively simple baseline methods. Each com-
ponent is realized as a separate program. The representation
step takes affiliation strings as input and outputs a set of
attribute-value pairs for each string. The interpolation step
takes representations as input and tries to output other rep-
resentations that correspond to ancestor institutions. The
separation step takes representations as input and outputs
a mapping between representations and their minimal ele-
ments. This can also produce the subset/superset partial order
on the fly. The collocation step can be run for any subset of
the representations, for example, for all supersets of a mini-
mal element (top-level institution). The results are displayed

as graphs. Figure 16 shows two subgraphs of the hierarchies
under the (Agricultural) University of Krakow and Univer-
sity of Otago, respectively. The conflation step is applied
directly on the graphs and is therefore more complicated to
implement: when two adjacent nodes are determined equiva-
lent, the (green) edge between them is removed and they are
merged. This means that the respective nodes are replaced
by a new node that has as incoming edges all edges going
into any of the two nodes and likewise for outgoing edges.
The corresponding representation is the union of the merged
nodes’ representations.

Adequacy of baseline implementations Using the baseline
affiliation parser, most of the produced representations look
correct. It is only through the creation of hierarchies that
occasional oddities become apparent. The advantage of the
interpolation step is that problematic generalizations can be
avoided by only interpolating obvious cases. In many cases,
there is no obvious solution (cf. Fig. 5c). The consequence
is that the number of interpolated nodes is rather limited.
As will be discussed under top-level resolution, the result
of separation suffers from a small number of overly general
minimal elements like UNI:Tech, which points to a problem
in the representation step—or in the affiliations themselves.
Detecting these cases is not trivial. These graphs are built
over all affiliations from the 1980s to 2014, during which
time many hierarchies or subdivision names have of course
changed. Fortunately, the subset of affiliations to be ordered
hierarchically can also be further broken down by custom
ranges over the WoS publication years. We have experi-
mented with a number of different conflation schemes and
unfortunately all effective ones at somepoint overshoot, lead-
ing to a self-enforcing process of oversize nodes absorbing
more and more adjacent nodes. This does not happen with
our conservative conflation baseline, but then, many edges
that should be contracted remain. For example: the entire
graph in Fig. 17 refers to the same branch, underscoring the
amount of synonymy. Hence, collocation is not at all a trivial
task.

Scalability The representation step has linear complexity as
it processes each affiliation independent of the others. It can
be easily parallellized by splitting up the set of input affilia-
tions. The same holds for the generalization step. Separation
amounts to minimal element search, which has been sub-
ject to a number of works [9,20,33,35,39–42,45,48,49]. In
practice, we have managed to deploy a parallellizable imple-
mentation that can solve the task in a matter of minutes,
even with the arguably slow Python programming language.
Collocation can be applied to any subsets. The graph visual-
izations are only practical if applied to a smaller subset. The
hierarchical relations as such can already be produced by
the separation step without additional costs (except storing
them). Currently, conflation is only applied in the context of



T. Backes et al.

Fig. 16 Graphs depict the cover relation of the subset partial order over
affiliation representations around a selected affiliation (in red). On the
bottom is the most general representation (institutional top level) with
supposed hierarchical specification towards the top. Line width corre-

sponds to strength of association, which is currently not exploited. The
green edge is determined contractable by a rule-based classifier (color
figure online)

Fig. 17 An extreme case of synonymy: all edges should be contracted as all nodes refer to the same institution

the graph visualization program. However, it can be applied
directly on the node pairs that make up the hierarchical rela-
tions by comparing the respective representations. Due to
the generality of this task, it can be assumed that the con-
sequences of interative edge contraction can be computed
efficiently. Overall, with little optimization efforts, using
around 16 cores, the entire Web of Science is processed
within 24 hours, but we expect this can be reduced substan-
tially by cutting corners.

Realistic affiliations and true lower-level institutions Our
approach reveals interesting relationships between affiliation
strings referring to international institutions. It can partially
order and visualize any subset of the WoS affiliations. Fig-
ure 16a, b displays cases where this process uncovered
hierarchical relationships, e.g. the Faculty of Animal Breed-
ing and Biology at the University of Agriculture in Krakow
has an animal hygiene lab (with some fur-related subdi-
vision), some department of anatomy/reproduction and a
veterinary institute (with a specialized reproduction subdi-

vision). In many cases where hierarchical relations are not
properly resolved, the result allows to inspect systematically
the variations among equivalent lower-level institutions. For
example, Fig. 17 displays 9 representations that all refer to
the same lower-level institution, the Burden of Disease Epi-
demiology, Equity and Cost-Effectiveness Programme at the
Department of Public Health of the University of Otago in
Wellington, NZ. The following variations can be observed:
The effectiveness part is only mentioned in some affilia-
tions. University of Otago is sometimes specified as being
the Wellington site. In one case, ‘South’ is included, pos-
sibly referring to South Otago. In one case ‘Bod’ refers to
the acronym of the Program (BODE3). In some cases, the
effectiveness part is mentioned. In two cases the postcode
was accidentally included in the representation. Finally, one
affiliation even references theHealth ScienceDivision,which
is actually above the Department of Public Health and even
above theWellington Site. We only know this from theWeb-
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site1 as it is not apparent from the affiliations themselves.
In Fig. 15, we can observe the effect of a missing comma
between Dept Earth Sci and FB VI (left top node vs. the
one below it). Fortunately, here even the conservative confla-
tion method recognizes the representations to be equivalent.
In summary, a subjective inspection of the output hierarchies
suggests that they can be usedwell to get an overviewof some
of the hierarchical relationships and many of the systematic
variations among equivalent affiliations. It is, however, obvi-
ous that the complete true underlying hierarchy is not clear
until a reference like the official website is compared to the
extracted relation. In addition, without a specific date range
applied, the hierarchies also include outdated structures.

6.2 Objective evaluation

Top-level resolution Separation achieves 63% recall and 23%
precision as top-level disambiguation. The main problem
is overly general representations such as CLI : {Univ}.
Although it is possible that some affiliation strings simply
do not contain all relevant information, usually the problem
can be traced back to missed or miss-classified components
from the representation step. Often this happens when some
address information has to be used to complete information
in the rest of the string, as in Univ Hosp, INF 672, 69120
Heidelberg.

In Fig. 18a, we see a number of overly general minimum
elements in orange that surely all create incorrect top-level
relations, e.g. UNI : {Tech} or INST : {Geschichte}. None of
these should have been created, whether through represen-
tation or interpolation. On the other hand, UNI : {Dresden}
actually is correct but links two affiliations that are consid-
ered separate in the gold standard. The reason is that the
gold standard cannot assign an affiliation to multiple top-
level institutions. Other examples include a joint affiliation
by University Göttingen and the Charite or by University
Würzburg and a clinic in Bad Mergentheim. In Fig. 18b,
we show cases where our method misses true connections
between affiliations as no minimal elements are shared. In
the first, one would have to know that the paleontological
collection is part of the University of Munich. In the next
example, there is a typo, et cetera. We conclude that the pri-
mary source of error for top-level disambiguation lies in the
representation step, which can be improved in a standalone
project.

Top-level linking In our framework, a simple linking base-
line for individual top-level institutions may use a manually
defined linking candidate like UNI : {Trier} as a top-level
representation to select all its supersets by performing the

1 https://www.otago.ac.nz/wellington/departments/publichealth/
research/bode3/index.html.

Table 3 Results of the linking task

Univ TRUE

Trier id:86

POSITIVE 17571

95
% 18488

UNI:{Trier} 99%

17729

Univ TRUE

Bonn id:168

POSITIVE 318179

99
% 320873

UNI:{Bonn} 89%

359330

Univ TRUE

Heidelberg id:129

POSITIVE 489437

97
% 503469

UNI:{Heidelberg} 81%

603658

top- TRUE

level target

POSITIVE TP

P
re
c

P
predictor Rec

T

TP: true-positive pairs, P: positives, T: true, Prec: precision, Rec: recall.
The bottom-right corner legend shows how the numbers are arranged.
With positive pairs on the right and true ones on the bottom, preci-
sion and recall are displayed in between as proportion TP/P and TP/P,
respectively

corresponding database query. We test this for three univer-
sities (see Table 3). Recall of 81–99% and 95–99% precision
are in the same range as results for the other fully automatic
linking methods [24,44]. Imperfections in precision are usu-
ally due to absorption of similar institutions in the same city
(e.g.Bonn Rhein SiegUniv Appl Sci, St Augustin, Germany is
not part of the University of Bonn), while recall mistakes are
the result of difficulties during string parsing (e.g.Univ Hals
NasenOhrenklin, Heidelberg, Germany is part ofHeidelberg
University).

Lower-level resolution Results for hierarchical resolution in
the sense of (T5) Order institutions hierarchically are dis-
played in Table 4. Percentages are rounded, so that 0% does
not necessarily mean TP is zero. The legend in the bottom
right corner of Table 3 explains that we use equivalence (=)
and subset (<) relation as well as their combination (≤) as
predictors to target these same three relations in the hierar-
chical gold standard. True equivalence can be predicted well
both by which affiliations are represented under the same
node (100% precision and recall between 82 and 97% or a
microaverage of 85%) and by which affiliations are super-
sets/subsets (100% precision and between 87 and 99% recall
or a microaverage of 89%). The latter results are actually
better since most predicted proper supersets are true equiva-
lences (65–100% precision or a microaverage of 93%).

Hierarchical resolution Most correct hierarchical relations
have been extracted for University Heidelberg with 30% pre-
cision (the rest are equivalences); however, still at only 4%
recall. According to Table 4 only 3 + 278 + 2,415 = 2,696
or 2.5% of all gold hierarchical relations are found. While,
for example, the relation between Univ Trier, Biogeog FB
VI and Univ Trier, FB VI is correctly identified in Fig. 15,
many affiliations lack clues for such relations. For example,

https://www.otago.ac.nz/wellington/departments/publichealth/research/bode3/index.html
https://www.otago.ac.nz/wellington/departments/publichealth/research/bode3/index.html
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Fig. 18 Top-level resolution errors; filled: minimum elements; green: correct minels; orange: overly general minels (color figure online)

Table 4 Numbers and rounded ratios of predicted (positive) and target (true) hierarchical relationships (Legend as in Table 3)

Univ TRUE

Trier = ≤ <

P
O
SI
T
IV

E

=
72768

10
0%

72768

10
0% 0

0% 72768
97% 93% 0%

≤ 73661

10
0% 73664

10
0% 3

0% 73664
99% 94% 0%

<
893

10
0% 896

10
0% 3

0% 896
1% 0% 0%

75106 78643 3537

Univ TRUE

Bonn = ≤ <

P
O
SI
T
IV

E

=
665422

10
0% 665422

10
0% 0

0% 665422
82% 78% 0%

≤ 709678

10
0% 709956

10
0% 278 0% 710815

87% 83% 1%

<
44256

97
% 44534

98
% 278

1% 45393
5% 5% 1%

816372 854103 37731

Univ TRUE

Heid. = ≤ <

P
O
SI
T
IV

E

=
641820

10
0% 641820

10
0% 0

0% 641820
89% 81% 0%

≤ 647101

10
0% 649516

10
0% 2415 0% 649921

89% 82% 4%

<
5281

65
% 7696

95
% 2415

30
% 8101

0% 1% 4%

723558 792005 68447

In contrast with the latter table, here we use three relations as predictors and targets. Values in the diagonals are most informative: for example,
in the =, = cells, we predict true equality (same node in true hierarchy) by system-based equality (same node in inferred hierarchy), in ≤, ≤ true
dominance or equality by system dominance or equality and in <, < true strict dominance by system strict dominance. The other cells give results
for using predictors for different targets and are mostly interesting for error analysis

in Fig. 14, Univ Trier, Dept Hydro contains no reference to
Department VI - Regional and Environmental Science. The
number of hierarchical relationships that can be found is also
rather low (6% of all annotated pairs). Many correctly iden-
tified hierarchical relationships are not between annotated
representations and thus not counted.

7 Discussion

In this section, we discuss our objective results and their
implications for future work.

7.1 Top-level resolution/linking

The results presented in the previous section reveal that top-
level resolution mainly suffers from overly general incorrect

minimal elements such as UNI:Tech, which are not trivial
to detect, because their attribute structure by itself does not
indicate the problem. In the absence of a predefined hier-
archical structure, the most difficult part of the resolution
task is to detect top-level institutions. Assuming that the top-
level institutions are known and that simple representations
like UNI:Trier can be derived, top-level linking by superset
queries works well, i.e. most of the lower-level affiliations’
representations contain the respective feature(s). The semi-
automatic linkingmethodbyDonner et al. [19] achieves close
to 100% Precision and Recall. However, it includes plenty
of manual interventions that do not scale to larger data and
smaller effort. Considering the good linking results, one can
see that the additional difficulty of the separation step lies
in finding the exact linking candidates in an unsupervised
fashion, a task which was not considered by previous link-
ing methods that have instead extracted them from reference



Towards hierarchical affiliation resolution: framework, baselines, dataset

datasets [24,44]. For the most part, the problem of overly
general representations is rooted in the representation step.
However, as one cannot preclude such mistakes and their
effect can be devastating with only one overly general rep-
resentation connecting numerous unrelated affiliations (e.g.
all university hospitals), it seems reasonable to consider a
filtering step that rejects under-specified representations. It
remains to be tested if also the separation step could be
adapted for this purpose by considering edge weights for
a soft connectedness instead of a hard binary one.

7.2 Lower-level (hierarchical) resolution

The extracted hierarchies also contain information about
affiliations that are assigned to the same node. This mapping
corresponds to an equivalence relation and provides an effec-
tive lower-level resolution with a solid performance. This
means that for any known lower-level institution, the set of
all affiliations belonging to it (which usually includes also its
specifications) can be approximated relatively well already.
At the core, this work is an attempt to discover hierarchical
relationships between affiliations. This task has been proved
very difficult. On the one hand, almost all claimed hierarchi-
cal relationships actually describe true equivalences. On the
other, practically none of the annotated hierarchical relation-
ships have been discovered (0-4% recall). The reason why
most claimed hierarchical relationships are actually equiva-
lences lies in the conservative conflation method and could
be addressed with a more aggressive conflation method on
higher quality representations, which would also retrieve
more true hierarchical relationships. The fact that almost no
annotated hierarchical relationships have been found can be
explained to some extend by the small size of the hierarchi-
cal annotation, but mainly suggests that the subset/superset
partial order over the representations as generated by our
baseline parser does no reveal these relationships. Figure 14
suggests that many of these are not found since the affilia-
tion strings simply do not include this information (cf. Univ
Trier, Dept Hydrol which should be under Univ Trier, Dept
Earth Sci FB VI). Therefore, the relationship can only be
discovered using additional information.

7.3 Linking versus resolution

On top of the more fine-grained subdivision of tasks T1–T5,
the hierarchical affiliation resolution consists of two major
challenges: (1) hierarchy extraction (i.e. the induction of a
real world institutional hierarchy) and (2) hierarchical res-
olution (i.e. the assignment of affiliations to institutional
nodes in an institutional hierarchy). Our focus was on induc-
ing the hierarchy from the same affiliation data that were
to be resolved hierarchically (thus unsupervised hierarchical
resolution). Under the assumption of the preexistence of a

solution for challenge (1), a linking setup may constitute an
easier scenario where an equally basic methodology might
produce a better outcome than that whichwas returned by our
fully unsupervised method. In fact, our results support pre-
vious top-level resolution approaches in their preference of
linking over induction. Obviously, this is only possiblewhere
such knowledge is available. All affiliations that cannot be
mapped to preexisting hierarchies can still be ordered by
our unsupervised method—whether to obtain a partial result
or to help inspect the remaining unassigned data. To create
our hierarchical gold standard, we have implemented a sim-
ple retrieval-based linking method. During verification, only
about half of the links were determined correct, showing that
linking is not trivial either. The problems can be explained by
the same properties that our unsupervised approach exploits,
i.e. the mentioning of higher-level institutions in affiliations
referring to their descendants, which confuses the retrieval
engine as to which aspect of the string is crucial. It suggests
that hierarchical linking and resolution are in fact not con-
tradictory, but complementary.

7.4 Limitations and future work

Our experiments have shown the difficulties in various
smaller subtasks involved in unsupervised hierarchical affil-
iation resolution, in particular with respect to the WoS
as a large source of heterogeneous affiliations. Based on
these insights, future work can focus on individual aspects
or framework components. Improved representation would
greatly benefit the overall performance as perfect affiliations
(or representations thereof) only require the trivial colloca-
tion step to reconstruct optimal hierarchies. One approach
could be to minimize the need for conflation-based error-
correction by directly learning representations such that they
recreate a large hierarchical gold standard. While this would
be very challenging both in terms of data requirements and in
the design of the learning procedure, an equivalence classifier
for conflation constitutes a more straightforward supervised
learning problem. Finally, interpolation offers an interest-
ing application for understanding and generalizing individual
representations.

8 Conclusion

In this work, we have introduced and analysed the task of
automatic hierarchical affiliation resolution, breaking it down
into five major subtasks. We have underlined its importance
in particular for the aggregation of academic performance
measures by discussing in Sect. 2 how previous performance
comparisons have relied either on top-level resolution or
on manual efforts, where the latter limitation has—with the
exception of few large-scale government-directed surveys—
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led to a limited scale of such studies. We have identified an
integrated framework in Sect. 3 that is guaranteed to solve the
five subtasks for hypothetical perfect affiliations and, when
applied on realistic affiliations, reveals their inherent pecu-
liarities and difficulties through the observable discrepancies
between the ideal and the real case. The framework con-
sists of five pipeline components, whereof three are designed
specifically to enable the focused handling of the uncov-
ered irregularities.Many easier tasks like top-level resolution
or hierarchical linking can be viewed as special cases that
correspond to a subset of the tasks and components. We
have described a specific ad-hoc baseline to instantiate each
component as proof of concept in Sect. 4 and to allow for
experimentation and evaluation. To ensure scalability, we
have implemented all baselines towards application on the
entire WoS with millions of affiliations. We have used a
large scale gold standard for top-level resolution to design
our experiments in Sect. 5 and created a first hierarchical one
that can be extended easily in a semi-automatic fashion.

The findings from Sects. 6 and 7 regarding our first
approach to tasks T1–T5 can be summarized as follows: (T1)
Discovering top-level institutions based only on their repre-
sentations is quite challenging, in particular due to overly
general or underspecified representations. This explains why
all previous research has used curated lists of top-level insti-
tutions. We only achieve 63% recall and 23% precision with
our baseline implementation. These resolution errors could
be addressed with better representations. (T2) Alternatively,
affiliations can be assigned to a given top-level institution by
defining a linking candidate representation and selecting all
its supersets. Performance is good with precision from 95
to 99% and recall from 81 to 99% (see Table 3) and should
improve with better representations. (T3) Lower-level insti-
tutions can be discovered on all levels by grouping them
based on equal or equivalent representations. After conser-
vative conflation, our baseline achieves 100% precision and
82–97% recall (see Table 4). (T4) As for T1, affiliations can
be assigned to lower-level institutions by selecting all affilia-
tions with representationsmore or equally specific than those
corresponding to the result obtained in T3.We achieve 100%
precision and 82–94% recall. This task satisfies the require-
ments for ordinary lower-level aggregation of performance
measures. (T5) In addition, lower-level institutions (and their
assigned affiliations) can be ordered hierarchically by Hasse
diagrams. Although manual inspection confirms that a num-
ber of true hierarchical relations are evidently revealed by the
current methods, practically none of the annotated hierarchi-
cal relationships were found. Error analysis suggests that this
is due to the fact that the respective relationships are simply
not encoded in the affiliations.

Our results underline the difficulty of hierarchical affilia-
tion resolution and thereby support the implicit assumptions
of previous work that has focused on linking to known

institutions instead. However, hierarchical resolution is still
important, as it offers an alternative when such knowledge
is not available. As a result of our first approach, future
work can focus on improving specific aspects or frame-
work components, for example, by applying supervised and
unsupervised learning in the representation, interpolation or
conflation step.

Overall, we have made the following contributions: (C1)
The five subtasks T1–T5 have been identified by us as the
requirements for unsupervised hierarchical affiliation resolu-
tion. (C2) The five components of our proposed framework
provide a systematic way to approach all of these subtasks.
(C3) This framework has been instantiated with first base-
lines that havebeen evaluated throughdedicatedperformance
measures and error analysis. (C4) To do so, we have intro-
duced a number of options for the evaluation of hierarchical
affiliation resolution, including dedicated datasets. (C5) In
the error analysis and the above concluding remarks, we
have stressed which aspects are particularly challenging and
pointed out clearly how future research may continue to
improve the overall results. We have introduced and cov-
ered all aspects of the hierarchical resolution problem—from
framework, common pitfalls, methods, implementation and
scaling to evaluation. The description is accompanied by var-
ious examples and visualizations to underline our proposals
and insights.
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